--cca_predict_components
Switch
--cca_predict_components
Description
Predicts component distribution given a model.
Argument and Default Value
None
Details
Given a pickle model (--load_model and --picklefile), which was generated by --cca, predict the component distribution over the groups, using the Z matrix view (which is usually the outcomes).
If you want to use the X matrix view (features usually or controls if --cca_outcomes_vs_controls), change:
def predictCompsToSQL(self,tablename=None, groupFreqThresh = 0, csv = False, outputname = None, NAthresh = 4, useXmatrix = False):
NOTE: this doesn't save anything by default, use either --csv and/or fwflag_to_sql_table
Other Switches
Required Switches:
Optional Switches:
Example Commands
# Uses model and disease values to predict component distribution per county, and outputting the county values into
# both the DELETEME MySQL table and the deleteMe.csv file.
dlatkInterface.py -d county_disease -t messages_en -c cnty -f 'feat$cat_met_a30_2000_cp_w$messages_en$cnty$16to16' --group_freq_thresh 0 --outcome_table topDeaths_comp_0910 --outcomes 01hea_aar 02mal_aar 03chr_aar 04cer_aar 05acc_aar 06alz_aar 07dia_aar 08nep_aar 09flu_aar 10sel_aar 11sep_aar 12liv_aar 13hyp_aar 14par_aar 15pne_aar --cca_predict_components --load_model --picklefile diseasesOnd6s4.K10.X0_4.Z0_4.gft0.pickle --to_sql_table DELETEME --csv --output_name deleteMe.csv